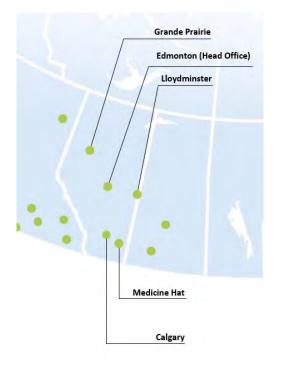
## Optimizing Mobile Mapping Workflow by Implementing Deep Learning for Transportation Projects

March 12, 2024



### Table of Contents



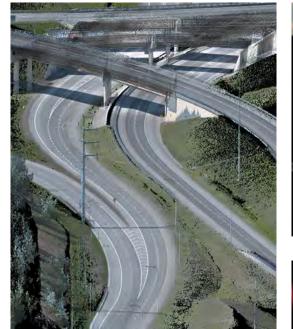

- 1. Introduction
- 2. Asset Management
- 3. Geospatial
- 4. Mobile Mapping System
- 5. Deep Learning for Transportation Projects

## Introduction

### GeoVerra

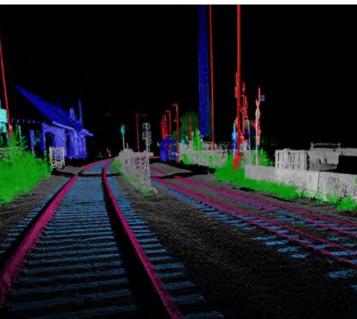
GeoVerra is well-positioned for a rapidly-changing future, but our roots in the industry stretch back over 100 years. We have continued to evolve as a fusion of specialties brought together through mergers and acquisitions of various geomatics firms across Canada: WSP, Altus Geomatics, among others.






### Alex Garcia






- Bachelor and Master of Science in Geomatics Engineering
- 7 Years of experience executing Mobile Mapping Projects
- Collected more than 45,000 Miles of Mobile Mapping data
- Highways
- Railways
- Urban Areas
- Municipalities
- Unpaved roads
- Powerline corridors
- Survey Grade (High Accuracy)
- Asset Grade (lower Accuracy)

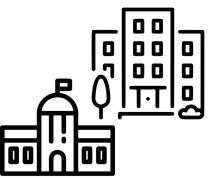




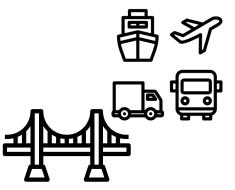







# Asset Management

## Asset Management /What is it?




Asset management is the process of making decisions about the use and care of infrastructure to deliver services in a way that considers current and future needs, manages risks and opportunities, and makes the best use of resources.

- WHAT DO WE OWN?
- WHERE IS IT?
- WHAT ARE THE ATTRIBUTES?
- WHEN WAS IT INSTALLED?
- WHAT WILL IT COST TO REPLACE?
- WHAT CONDITION IS IT IN?
- HOW LONG WILL IT LAST?

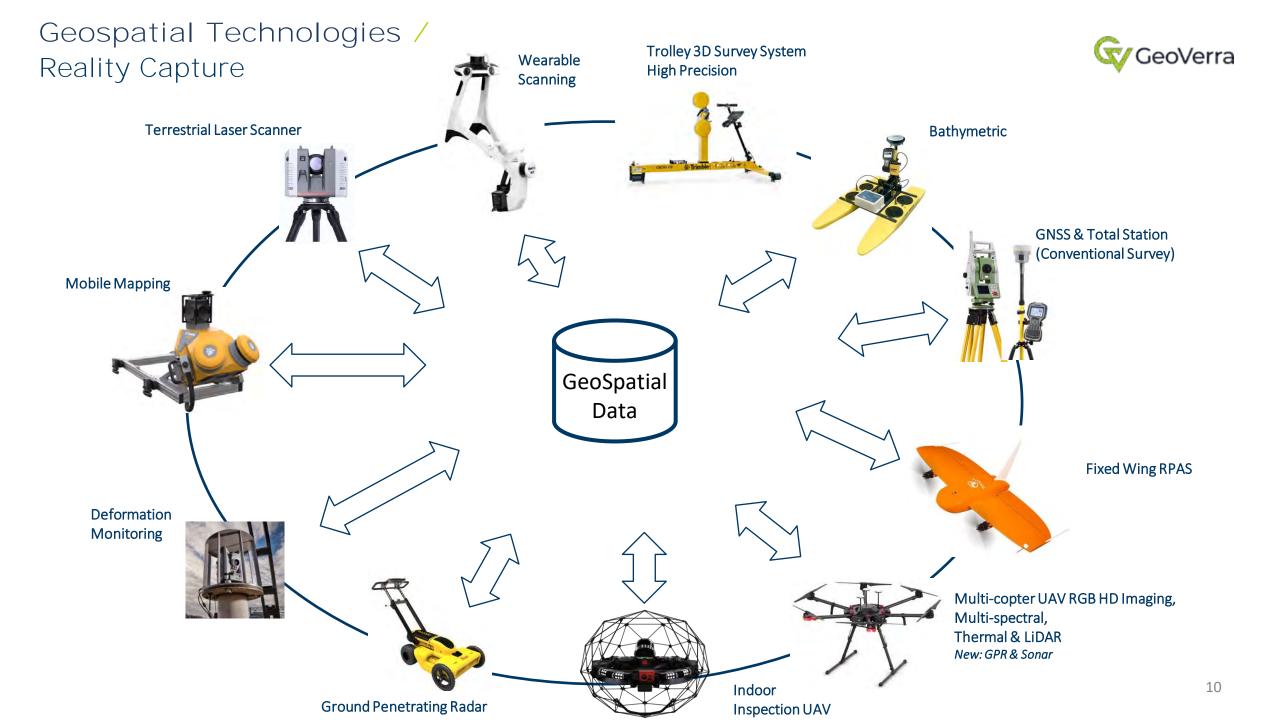


Municipalities



Transportation

### Asset Management / How to Get it Started?


- Start with the asset categories that have the **biggest value** or potentially pose the biggest risk of failure.
- Set up your **inventory** with all the fields, even if you don't currently have information available to fill the fields.
- Field verification of information can be very useful when setting up your inventory. This can also be a good time to collect observations about condition, maintenance, etc.
- Storing asset information in GIS provides an easy way to access information and allows for export of spreadsheets as needed. If you don't have GIS resources, consider the use of a cloud-based
- GIS subscription service that can be tailored to your needs.

"Asset management is a software program, right?"

NOPE. Asset management is a set of practices for making good decisions, and it's an ongoing process. Software can be a useful tool, but it's not going to replace the need for people to make decisions.








### Asset Management / Geospatial

"Geospatial technologies and Services can provide municipalities and transportation agencies with the tools to manage their assets more effectively by offering detailed spatial insights, improving decision-making processes, enhancing efficiency, and ultimately leading to more resilient and sustainable infrastructure management practices.

- 1. Create or Update Asset Inventory and Monitoring
- 2. Spatial Visualization and Analysis
- 3. Improved Decision-Making
- 4. Predictive Maintenance and Risk Management
- 5. Resource Optimization and Cost Savings
- 6. Enhanced Public Engagement and Transparency
- 7. Regulatory Compliance and Reporting
- 8. Disaster Management and Response



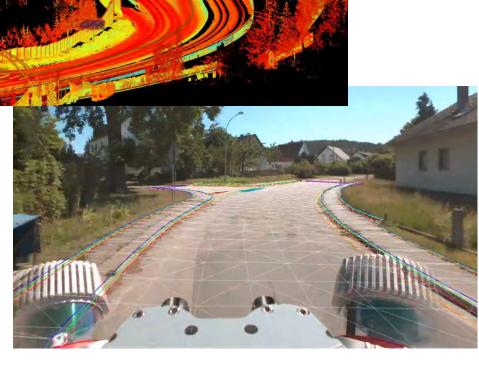




# Mobile Mapping System

## Advantages of Mobile Mapping Over Traditional Technologies




### **Traditional Technologies**

Boots on the ground Collecting point by point and entering the features manually on the data controller in the field



### Geospatial Technologies

Remotely collecting from a moving vehicle massive amount of High Resolution of 3D information







### **Understanding Mobile Mapping**

A **Mobile Mapping System (MMS)** is an advanced, adaptable platform used for the collection of geospatial data <u>on the go</u>. Not limited to vehicle mounting, an MMS can also be deployed as a backpack unit, allowing for flexibility in various environments.

### **Core Sensors**

- Navigation Satellite System (GNSS),
- Inertial Measurement Unit (IMU),
- Simultaneous Localization and Mapping (SLAM)

## Mobile Mapping Services / Equipment Experience





LiDAR USA - Reigl



Trimble Mx9



Trimble Mx50





Leica Pegasus Ultimate



Trimble Mx7



LiDAR USA - Velodyne

### What is mobile mapping? / Hardware





RGB and Infrared Camera Cameras Laser Crack Measurement System (**LCMS-2**)

## What is mobile mapping? / Typical MMS Collected data



🐨 GeoVerra



## What is mobile mapping? / Typical MMS Collected data



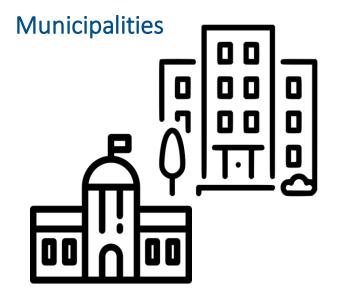






## What is mobile mapping? / Typical MMS Collected data






# What does mobile mapping enable above and beyond other technologies?

- **High productivity -** kilometers of roads mapped in a single day
- Increased safety Removing surveyors from traffic on roadways
- High accuracy/precision cm accuracy level / mm precision level for 2D clearance analysis
- Rich 3D dataset High 3D data density for close range acquisition
- Cost Reductions Reduce field visits to plan, scope, inspect and audit
- **Multiple Sensors** Different sensors can easily be integrated to the MMS. For instance, GPR, thermo Camera, High definition 360 camera, extra sensors for pavement/asphalt analysis, etc.
- Extract automatic and semi-automatic features from Point Cloud and Imagery
- One of the key potential benefits of MMS technology is that a **single acquired dataset** can be **used** for a **variety of applications**. The data also can possibly be "mined" for additional information that may not have been a focus of the original acquisition e.g., Mapping, Surveying, Engineering, GIS, etc.

## The use of MMS for T&I





### **Municipal Applications:**

**1.Utility Infrastructure:** 

- Manholes and Catch Basins: Location, depth, and condition.
- Hydrants and Valves: Positions, operational status, and type.
- **Electricity Poles and Wires:** Height, condition, and line sag measurement.
- **Pipelines and Conduits:** Above and below-ground routing and depth.

2.Environmental Monitoring:

- **Tree Canopy and Vegetation:** Coverage, health indicators, and species identification.
- Water Bodies: Shoreline mapping, volume estimation, and water quality assessment.

**3.Public Amenities:** 

- **Park Equipment:** Benches, tables, playground structures, and their conditions.
- Street Furniture: Waste bins, lighting, bus stops, and signage.

4. Building and Zoning:

- Structures: Building footprints, roof structures, and façade details.
- Land Use: Property boundaries, land use classification, and zoning compliance.

**5.Public Safety and Emergency Planning:** 

- **Risk Assessment:** Flood zones, fire hydrant locations, and disaster response routes.
- Security Features: Barrier locations, security cameras, and access control points.

## The use of MMS for T&I



### **Transportation Applications:**

**1.Roadway Infrastructure:** 

- Pavement Analysis: Surface condition, cracks, and potholes.
- Lane Markings: Visibility, wear, and compliance with standards.
- **Signage:** Type, location, and reflectivity condition.

### 2.Traffic Management:

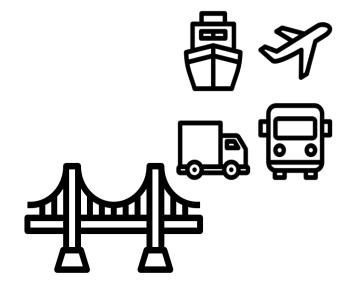
- Traffic Signals: Position, type, and pedestrian crossing indicators.
- Roadway Geometry: Curvature, grade, and cross-slope for safety analysis.

**3.Bridge Inspection:** 

- Structural Elements: Bridge deck, girders, piers, and bearings condition assessment.
- Clearance Measurements: Vertical clearance under overpasses and bridges.

4.Asset Management:

- **Guardrails and Barriers:** Length, location, and damage.
- Culverts and Drainage: Position, diameter, material, and blockage status.


**5.Rail and Transit Networks:** 

- Rail Lines: Track geometry, switches, and crossings.
- Transit Assets: Station platforms, shelters, and associated infrastructure.

6.Pedestrian and Cycling Infrastructure:

- Sidewalks and Paths: Width, surface type, and connectivity.
- **Bicycle Lanes:** Location, delineation, and connection to the broader network.

### Transportation





Deep Learning for Transportation Projects



### Mobile Mapping Workflow



#### CAPTURE

### Quickly obtain asset data

High-quality colorized point clouds and 360° immersive imagery with simple, smart device operation and single cable sensor connection.





### PROCESS

### Process vehicle trajectory

Trajectory data processing using tightly coupled GNSS and inertial data incorporated into Trimble Business Center software.





#### EXTRACT

### High-quality deliverables

Create survey, engineering and GIS deliverables using existing data schemas and connect to existing asset databases.

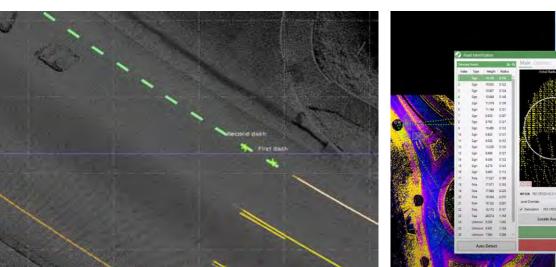




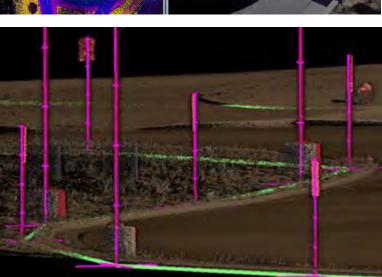
#### SHARE

## Publish & collaborate

Share for collaboration point clouds and images with overlaid existing asset data. Extract new assets and store them in databases.




### Manual and Semi Manual Asset Extraction




- Algorithm-based and templates Approach
- Lots of clicks when performing feature extraction
- Manual or Semi Manual extraction of attributes
- **Productivity** becomes a problem and offset the time gained in the field
- Complex scenes and objects is a problem for this this approach
- Very Inefficient approach for large scale projects

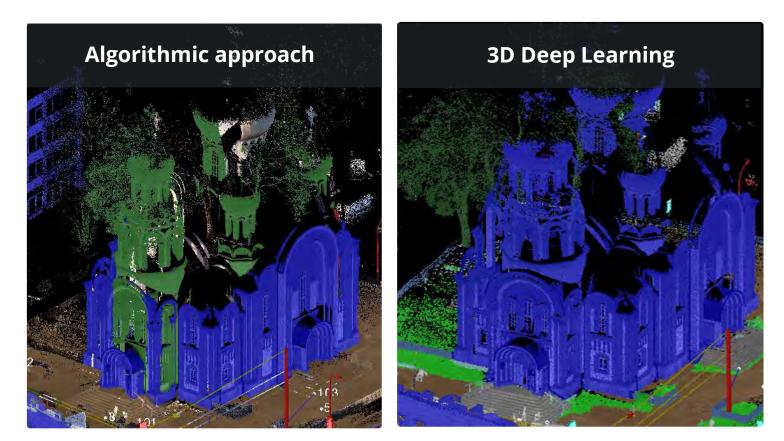
Diversity of Assets is a huge problem when feature extraction is based on Template and Algorithm-based







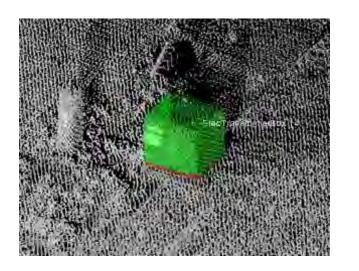
Point Cloud Training & Asset Library

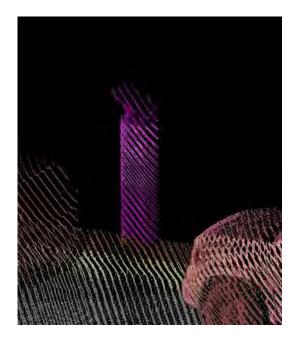

## Deep Learning model to Classify Assets



## For algorithm-based approach, diversity is problem;

## For deep learning approach, it is an opportunity to learn


- **Flexibility** without constraints
- Overcome limitations even for complex objects and scenes
- Easily customizable solutions
- Reliable input for automated and manual feature extraction






### Create an Asset Library by training data (Point Cloud and Imagery)

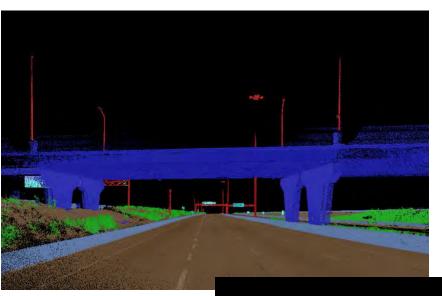
- Provinces
- Major Cities
- Department of Transportation
- Roads
- Highways
- Clients Sites
- Government
- Airports

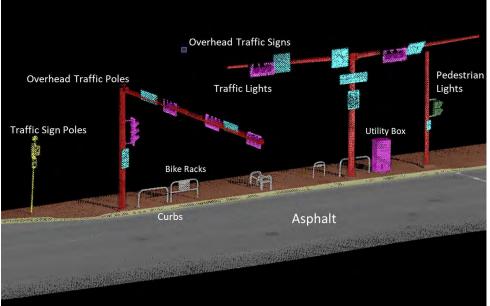






### Why using deep learning to classify nonpre-defined point cloud classes?

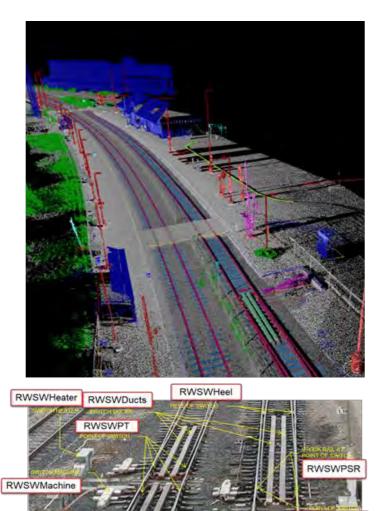

- Save time when uploading, downloading or sharing Point Cloud among the production team
- Make it easier to extract linear features using less clean data and save time
- Classify specifics assets
- Reduce the time searching for the assets along the corridor
- Extracted assets can be used to extract location and attributes of these assets automatically using AI again
- Solve the tasks specific to **each domain** and **geographic location**






### Asset Management (Examples)

- Differentiate types of Poles; Lights only, Traffic only,
- O Utility Box
- O Fire Hydrant
- O Traffic Signs
- O Traffic Lights
- O Pedestrian Lights
- O Lights
- O Electric Power Poles parts: Insulator; crossarm; transformer; Guy wire
- O Bus Stop
- O Benches
- O Bins, Bollards & Bicycle Parking
- O Jersey Barrier
- O Overhead Traffic Sign
- O Overhead Traffic Poles
- O Different types of Poles
- O Traffic Signs on Poles
- O Bridge Deck
- O Overhead Power/Communication Lines






RWSWHeel

### Asset Management LRT/Railway (Examples)

- o Ballast
- O Sleeper
- O Tracks
- O Switch Machine
- O Switch Ducts
- O Railway Junction Box
- O Traffic Signs
- O Traffics Light/Pole
- O Power Pole
- O Railway Bump
- O Bridge Decks

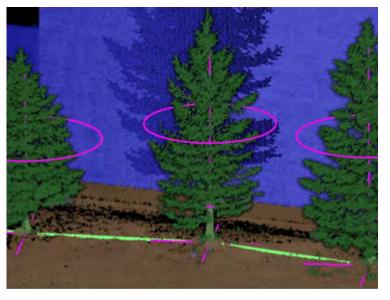


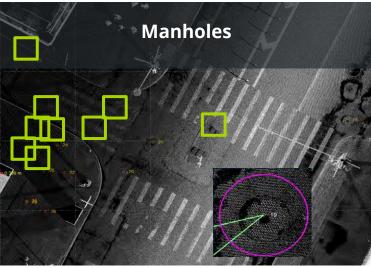
RWSWHeel

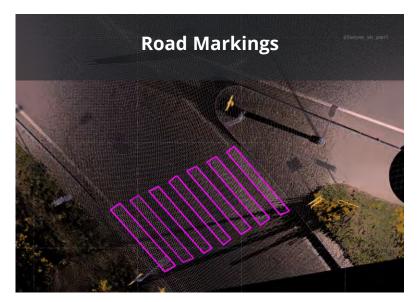
Switch

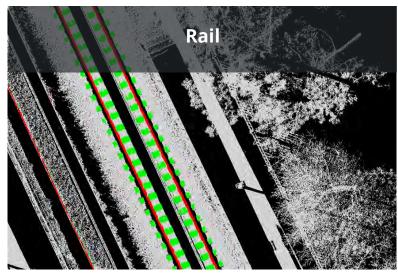
RWSWPT






- Automatic Feature Extraction powered by fusion of various Al techniques.
- Fast & easy extraction of attributes and geometry of each individual object with minimal user interaction







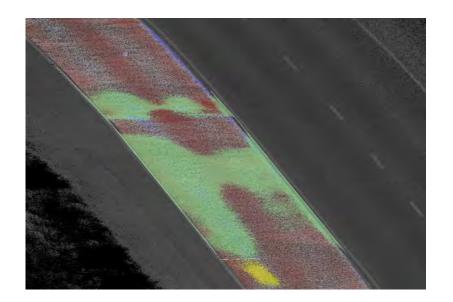


Automated pavement condition inspection using AI



### Automated Pavement Condition Inspection Using AI

- Comprehensive, highly-automated workflow tailored for mobile mapping users
- Leveraging point cloud and image data to detect and classify broad spectrum of road conditions including automated crack detection
- Pavement Condition Index calculation and reporting based on internationally recognized ASTM standard


### Detect

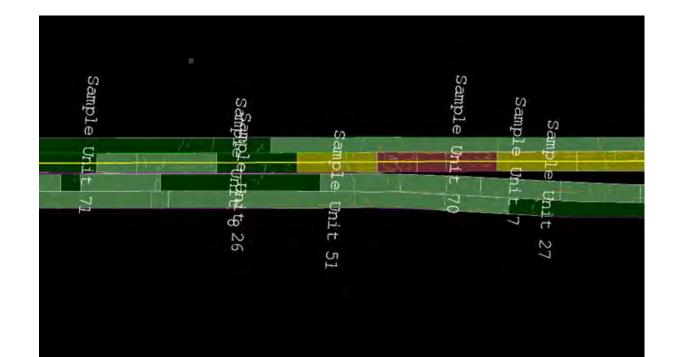
- Depression
- Pothole
- Bump
- Rutting
- Corrugation
- Alligator Cracking
- Trans./Long. Cracking
- Other Types of Cracks

### Classification

- Low
- Medium
- High

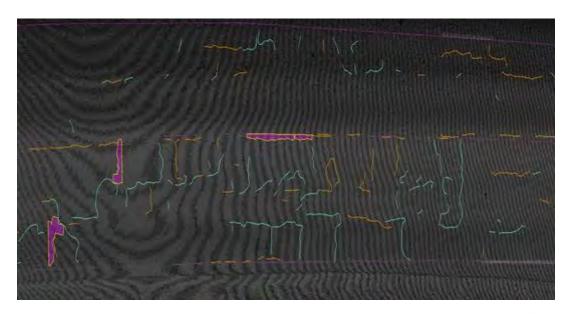




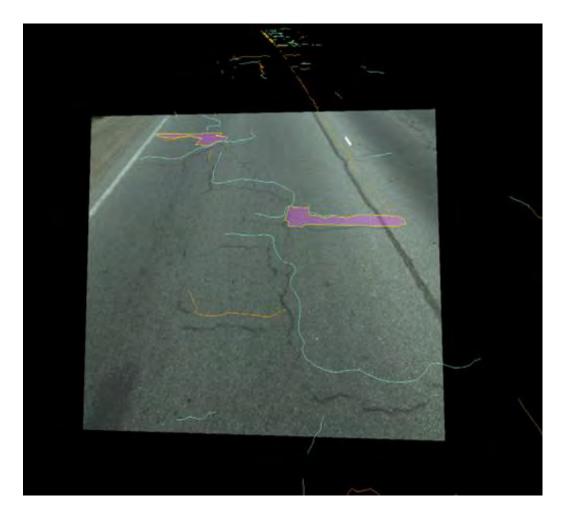

## Automated Pavement Condition Inspection Using AI

#### Pavement Condition Inspection Report

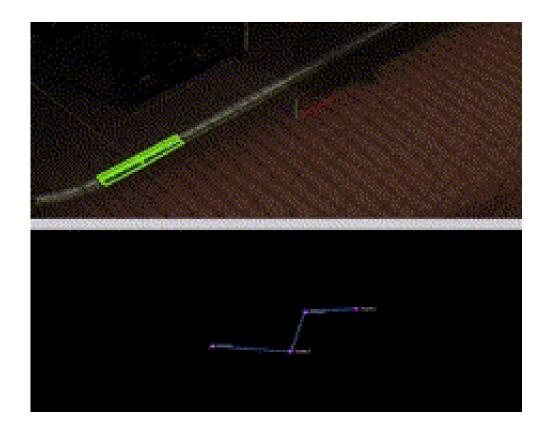
| Project file data |                                                                          | Coordinate System       |                          |
|-------------------|--------------------------------------------------------------------------|-------------------------|--------------------------|
| Name:             | D:\Pavement Analysis Test                                                | Name:                   | Canada/NAD 1983          |
|                   | \TMX9318061402-000587 - MX9_Demo<br>\TBC 7\Pavement_Analysis_DemoBPT.vce | Zone:                   | Modified TM Zone 07      |
| Size:             | 572 KB                                                                   | Datum:                  | NAD 1983 (Canada)        |
| Modified:         | 9/26/2023 9:42:09 AM (UTC:-6)                                            | Global reference datum: | NAD83(CSRS)v7            |
| Time zone:        | Mountain Standard Time                                                   | Global reference epoch: | 2010                     |
| Reference number: |                                                                          | Geoid:                  | Canada Geoid Model HT2_0 |
| Description:      |                                                                          | Vertical datum:         |                          |
| Comment 1:        |                                                                          | Calibrated site:        |                          |
| Comment 2:        |                                                                          |                         |                          |
| Comment 3:        |                                                                          |                         |                          |

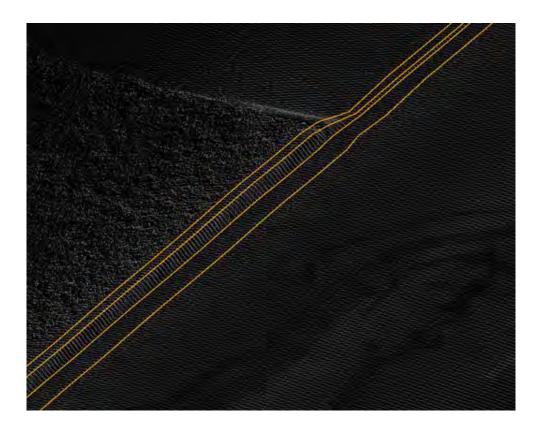

| PCI Rating             | Good  |
|------------------------|-------|
| PCI Score              | 86    |
| Total Fill Volume (m²) | 0.09  |
| Total Cut Volume (m²)  | -0.64 |

| Sample Unit   | Number of<br>Segments | Area (m²) | PCI Rating   | PCI Score | Distress<br>Types                                               | Fill Volume<br>(m²) | Cut Volume<br>(m²) |
|---------------|-----------------------|-----------|--------------|-----------|-----------------------------------------------------------------|---------------------|--------------------|
| Sample Unit 0 | 4                     | 231.81    | Good         | 89        | Alligator<br>Cracking,<br>Rutting,<br>Transv /Long.<br>Cracking | 0.00                | -0.02              |
| Sample Unit 1 | 4                     | 230.53    | Good         | 100       | Transv./Long.<br>Cracking                                       | 0.00                | 0.00               |
| Sample Unit 2 | 5                     | 240.25    | Satisfactory | 76        | Other<br>Cracking,<br>Transv./Long.<br>Cracking                 | 0.00                | 0.00               |
| Sample Unit 3 | 5                     | 241.64    | Good         | 100       | Transv./Long.<br>Cracking                                       | 0.00                | 0.00               |
| Sample Unit 4 | 4                     | 230.79    | Satisfactory | 80        | Other<br>Cracking,<br>Transv./Long.<br>Cracking                 | 0.00                | 0.00               |
| Sample Unit 5 | 4                     | 243.77    | Satisfactory | 72        | Other<br>Cracking,<br>Rutting,<br>Transv/Long.<br>Cracking      | 0.00                | -0.01              |



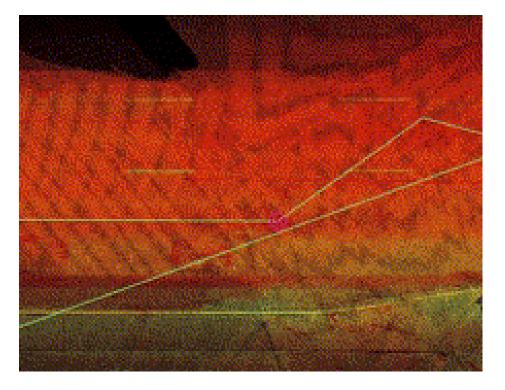

## Automated Pavement Condition Inspection Using AI



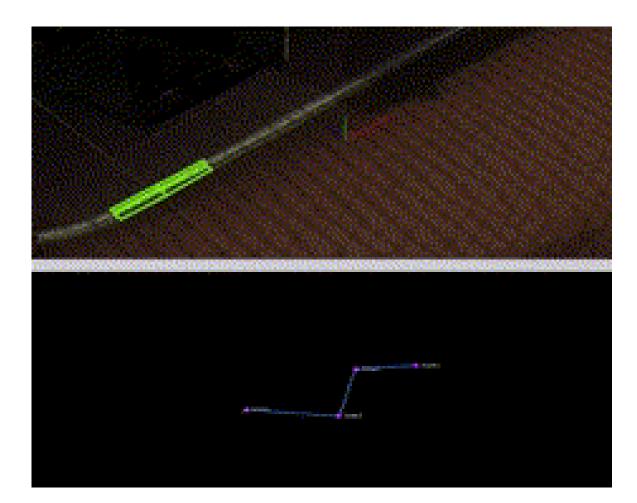


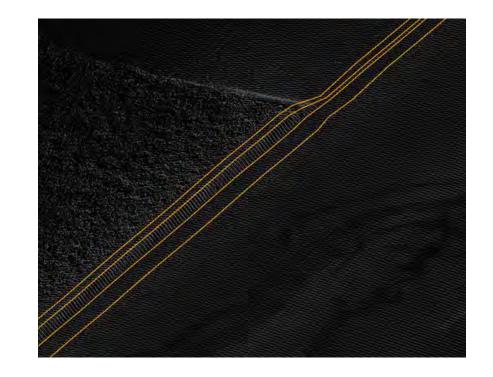




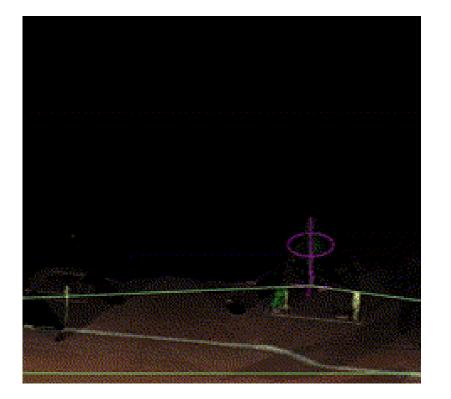




### **Curbs and Gutters**

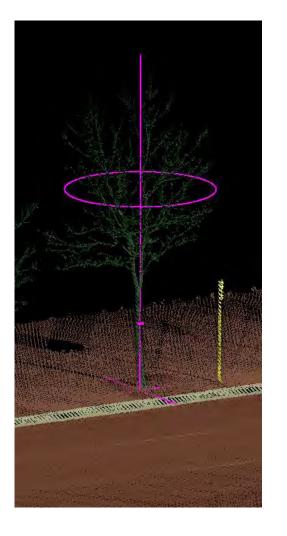





### Manholes





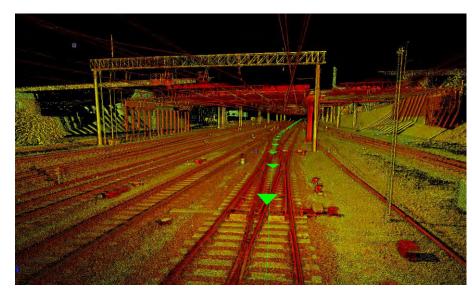



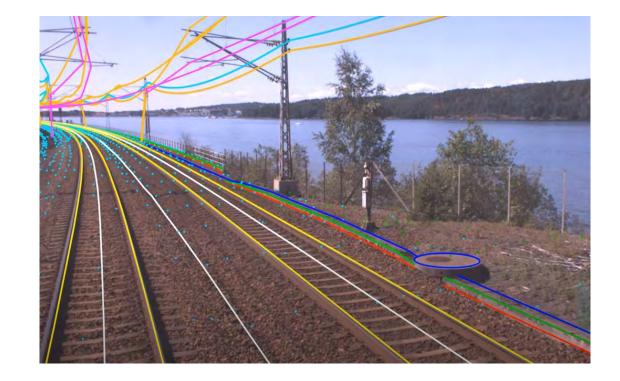


### **Curbs and Gutters**






Trees














**Rail Assets** 



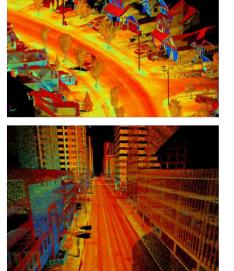
### Manhole

- Humidy ground is problem
- Approximadly 100 % of the manholes on the of 8 Km streets were identified
- Approximadly 90 % of the manholes outside of the steets (Sidewalks) were identifed
- 9% falso positives

### **Curbs and Gutter**

• 8km continues line in 55 min

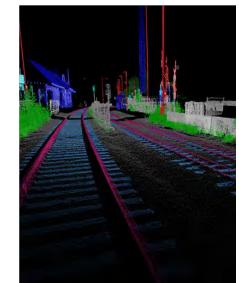
| Features             | Accuracy | False Positive |
|----------------------|----------|----------------|
| Fire Hydrant         | 100%     | 08%            |
| Garbage Bin          | 100%     | 11%            |
| Utility Box          | 98%      | 16%            |
| Traffic Lights       | 93%      | 14%            |
| Traffic Signs        | 100%     | 9%             |
| Bicycle Parking      | 100%     | 3%             |
| Traffic Poles        | 100%     | 0%             |
| Pedestrian<br>Lights | 96%      | 04%            |




City Environment Points: 10,000,000,000.00 Classification Time: 49 min

### AI – Efficiency Results

- **Enhance Productivity**: Delegate monotonous, repetitive tasks to always-on machines, freeing up human talent for complex, high-value work.
- Lower Service Costs: Streamline operations to cut down expenses.
- Accelerated Client Deliveries: Deliver services to clients more rapidly.
- Improved Accuracy and Reliability: Ensure precise feature extraction and point cloud classification.
- **Simplified Software Deployment**: Use fewer, more specialized software solutions tailored to specific regions and client types.


### **Municipalities**



### Highways



### Railroads





## Thank you

geoverra.com